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Ataxia telangiectasia results from mutations of ATM
and is characterized by severe neurodegeneration and de-
fective responses to DNA damage. Inactivation of cer-
tain DNA repair genes such as DNA ligase IV results in
massive neuronal apoptosis and embryonic lethality in
the mouse, indicating the occurrence of endogenously
formed DNA double-strand breaks during nervous sys-
tem development. Here we report that Atm is required
for apoptosis in all areas of the DNA ligase IV-deficient
developing nervous system. However, Atm deficiency
failed to rescue deficits in immune differentiation in
DNA ligase IV-null mice. These data indicate that ATM
responds to endogenous DNA lesions and functions dur-
ing development to eliminate neural cells that have in-
curred genomic damage. Therefore, ATM could be im-
portant for preventing accumulation of DNA-damaged
cells in the nervous system that might eventually lead to
the neurodegeneration observed in ataxia telangiectasia.
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Ataxia telangiectasia (A-T) results from mutations of
ATM (ataxia telangiectasia, mutated) and is character-
ized by progressive neurodegeneration and other defects
including immune deficiencies, cancer proneness, chro-
mosomal instability, and ionizing radiation sensitivity
(Sedgwick and Boder 1991; Savitsky et al. 1995; Lavin
and Shiloh 1997). However, neither the mechanism nor
the etiological agent responsible for the neurodegenera-
tion is known. ATM is a serine/threonine protein kinase
that is known to function as a DNA-damage sensor that
responds to DNA double-strand breaks (Lavin and Shiloh
1997; Canman and Lim 1998; Rotman and Shiloh 1998).
In vitro, ATM activation leads to cell cycle arrest via
phosphorylation of either p53 (Banin et al. 1998; Canman
et al. 1998; Khanna et al. 1998; G1 arrest) NBS1 (Gatei et
al. 2000; Lim et al. 2000; Wu et al. 2000; Zhao et al. 2000;
S-phase arrest), or Chk2 (Hirao et al. 2000; G2 arrest). In

the developing nervous system, Atm is required for ion-
izing radiation–induced apoptosis (Herzog et al. 1998;
Chong et al. 2000). This led to the hypothesis that Atm
functions during nervous system development to elimi-
nate neural cells that have incurred genomic damage
(Herzog et al. 1998). A number of other human syn-
dromes with defective responses to DNA damage also
develop neurological lesions (Rolig and McKinnon 2000).
However,
until recently, no compelling evidence existed that geno-
toxic stress was a feature of nervous system develop-
ment. Remarkably, inactivation of certain repair en-
zymes such as DNA ligase IV resulted in a substantial
perturbation of neurogenesis (Barnes et al. 1998; Gao et
al. 1998).

DNA ligase IV (Lig4) is a distinct nuclear ligase that is
a critical component of the nonhomologous end-joining
machinery involved in V(D)J recombination and DNA
repair (Robins and Lindahl 1996; Baumann and West
1998; Jeggo 1998). Yeast mutants lacking Lig4 proliferate
normally, although they are strongly deficient in the
joining of DNA double-strand breaks. In contrast, inac-
tivation of Lig4 in mice results in widespread apoptosis
of the developing nervous system, defective V(D)J recom-
bination and lymphocyte development, and embryonic
lethality (Barnes et al. 1998; Gao et al. 1998). Because
ATM is a DNA damage sensor whose deficiency leads to
neurodegeneration in humans, we asked if Atm signaling
mediated the neural apoptosis in Lig4-null mice. Strik-
ingly, we found that all apoptosis in the developing ner-
vous system resulting from ligase IV deficiency required
Atm, pinpointing Atm as a critical apoptotic effector af-
ter physiological DNA damage.

Results and Discussion

Because Lig4 deficiency most likely leads to accumula-
tion of unrepaired DNA double-strand breaks, we rea-
soned that these lesions would activate Atm. Therefore,
we determined whether the apoptotic signaling pathway
activated by Lig4 deficiency was similar to Atm-depen-
dent apoptosis after ionizing radiation. In the Lig4−/−

CNS, we found high levels of p53 and active caspase-3 in
the regions undergoing apoptosis. This was mostly re-
stricted to the intermediate zone (IZ) of the developing
CNS (Fig. 1d–f). Both p53 and caspase-3 are also activated
in the developing nervous system after ionizing radiation
in an Atm-dependent manner (Chong et al. 2000). In ad-
dition, Ser 15 phosphorylation of p53, as determined im-
munohistochemically, mirrored p53 stabilization in the
developing CNS of the Lig4−/− embryos (data not shown).
Thus, apoptosis resulting from Lig4 deficiency is similar
to that observed after cellular exposure to ionizing radia-
tion, consistent with a genotoxic lesion being present in
the Lig4-deficient embryos. Apoptosis in Lig4-deficient
embryos is observed very early during neurogenesis from
embryonic day 11 (E11) onward and is localized to neural
cells that are present in the postmitotic premigratory
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populations of the developing nervous system. Notably,
Atm-dependent apoptosis after ionizing radiation–in-
duced damage also occurs in the IZ that harbors premi-
gratory populations (data not shown). This underscores
the newly postmitotic neural populations as a physi-
ologically relevant functional target for Atm. Therefore,
we reasoned that, because the lesion associated with
Lig4 deficiency activated apoptosis in a similar manner
to DNA damage, Atm deficiency might rescue the Lig4-
null phenotype.

To investigate this, we interbred
Atm+/− and Lig4+/− mice to generate
animals null for both Atm and Lig4.
Strikingly, we found a complete at-
tenuation of apoptosis in the embry-
onic Lig4−/− Atm−/− nervous system,
indicating that all apoptosis caused
by Lig4 deficiency required Atm (Fig.
2). Extensive apoptosis occurs in
Lig4−/− Atm+/+ (Fig. 2b,f) and Lig4−/−

Atm+/− (Fig. 2c,g) spinal cord at E11.5
and developing cortex at E14.5,
whereas in the Lig4−/− Atm−/− tissue
there were no such aberrant events
(Fig. 2d,h). Furthermore, we found
that apoptosis was rescued in all ner-
vous system structures we examined
at each developmental stage between
E11.5 and E15.5 in the Lig4−/− Atm−/−

mice (data not shown). Thus, the le-
sion accumulated in Lig4-null neural
cells initiates apoptosis in an Atm-
dependent manner. This implies that
ATM functions to remove cells with
endogenously produced DNA double-
strand breaks from the developing
nervous system.

The extent of the rescue of the
Lig4−/− CNS by Atm deficiency was relatively complete
as mice were born alive. However, the Lig4−/− Atm−/−

mice were smaller than their wild-type littermates and
died around 2 d after birth. Initial histological analysis of
newborn brains revealed no significant difference be-
tween genotypes. In order to assess developmental vari-
ance between the Lig4−/− Atm−/− mice and littermates,
we measured overall neural development in the Lig4−/−

Atm−/− mice with markers that measure neuronal differ-
entiation. Using Tuj1 to identify immature neurons and

NeuN to identify mature neurons, we
observed no apparent differences in
brain development in the Lig4−/−

Atm−/− cerebellum (Fig. 3) or other
cortical structures (data not shown).
Both the overall histology of the cer-
ebellum (Fig. 3a,d,g) and the abun-
dance and distribution of developing
Tuj1+ neurons (Fig. 3b,e,h) or NeuN+

neurons (Fig. 3c,f,i) were not obvi-
ously affected in the Lig4−/− Atm−/−

mice. Therefore, most of the general
processes required for correct neural
development in the Lig4−/− Atm−/−

mice were functional, such as cellu-
lar proliferation, migration, and
differentiation. Although these Lig4−/−

Atm−/− cell populations are generally
intact, they have incurred genomic
damage, and this would eventually
have serious consequences; a situation
that is likely to be paralleled in A-T.

Figure 1. DNA Ligase IV deficiency initiates an apoptotic pathway characteristic of
DNA damage. In wild-type (WT) embryos very little p53 (a) or active caspase-3 (b) are
present and little apoptosis is seen in either the ventricular zone (VZ), the intermediate
zone (IZ), or the cortical plate (CP). In Lig4-deficient embryos, both p53 (d) and activated
caspase-3 (e) are abundant, as is apoptosis (f), as indicated by in situ endlabeling (ISEL).
Embryos are at E14.5. Magnification is 200×.

Figure 2. Atm is required for neuronal apoptosis in Lig4−/− embryos. Widespread apop-
tosis occurring in many CNS regions of the Lig4−/− embryo is dependent on functional
Atm. Compared to wild-type (WT) embryos (a,e), Lig4−/− embryos exhibit apoptosis in
either an Atm+/+ (b,f) or Atm+/− (c,g) background. However, Lig4−/− embryos also lacking
Atm are completely devoid of aberrant apoptosis (d,h) at different developmental times
and in different regions of the CNS. Atm−/− embryos are indistinguishable from WT
embryos. Magnification is 400×.
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GENES & DEVELOPMENT 2577



Recently, it was shown that p53 deficiency rescues
embryonic lethality in Lig4−/− mice (Frank et al. 2000; Y.
Lee, D.E. Barnes, T. Lindahl, and P.J. McKinnon, un-
publ.). Therefore, the rescue of Lig4 deficiency by Atm is
probably a result of blocking Atm downstream-signal
transduction in the nervous system. However, in the
case of p53−/− Lig4−/−, rescue was more substantial as
these double-null mice survived to around 6 wk of age
(Frank et al. 2000). The reason for the difference in rescue
of Lig4 deficiency by Atm and p53 is unclear. However,
as both an Atm-null and p53-null background rescues
neural apoptosis, it is possible that the primary cause for
survival differences resides outside the nervous system.

Lig4 deficiency causes substantial defects in the devel-
opment of the immune system, with both T and B cells
showing early developmental arrest (Gao et al. 1998).
Although Atm inactivation rescued the neurological de-
fects in Lig4−/− mice, T-cell defects were still present as
Lig4−/− Atm−/− animals showed decreased cellularity in
the thymus compared to Atm−/− or wild type. Moreover,
there was an almost complete lack of CD4+ CD8+ thy-
mocytes in the Lig4−/− Atm−/− animals, consistent with a
requirement for Lig4 in order for development to proceed
past the CD4− CD8− stage (Fig 4a). In newborn Lig4−/−

Atm−/− spleen, there was a decrease in CD45/B220+ B

cells, as compared to wild-type con-
trols or Atm null alone, although B-
cell differentiation at this stage was
similar between genotypes (Fig. 4b).
Thus, Atm deficiency does not cor-
rect the defective lymphocyte devel-
opment resulting from Lig4 defi-
ciency, indicating that neuronal res-
cue is selective and reflects the
tissue-specific functionality of Atm.
Similarly, loss of p53 restores neural
but not lymphocyte development in
both Lig4 null and XRCC4-deficient
mice (Frank et al. 2000; Gao et al.
2000; Roth and Gellert 2000). This
also weakens the parallels between
lymphoid development and neuronal
development and speculation of so-
matic DNA recombination as a nor-
mal feature of the developing nervous
system (Chun and Schatz 1999; Gil-
more et al. 2000). However, inactiva-
tion of certain other components re-
quired for V(D)J recombination, such
as Ku70 and Ku80, but not for DNA-
PKcs also lead to neuronal apoptosis,
with a level of severity that parallels
their efficacy in a V(D)J recombina-
tion end-joining assay (Gu et al.
2000). Furthermore, while the source
of DNA strand breaks during neuro-
genesis and their existence in the
Lig4-null CNS have yet to be identi-
fied, they do not appear to depend on
the RAG recombinase. Thus, viabil-

ity of the Lig4 null phenotype is not rescued in a RAG1
or RAG2 null background (data not shown), and RAG1 or
RAG2 deficiency did not rescue the embryonic lethality
caused by loss of XRCC4 (Sekiguchi et al. 1999). More-
over, embryonic neuronal apoptosis is also observed in
DNA polymerase �-deficient mice that are not compro-
mised in double-strand break repair (Sugo et al. 2000).
Thus, other types of DNA lesions can trigger apoptosis
in developing neurons; a cell type that may in any case
be uniquely sensitive to DNA damage (Roth and Gellert
2000).

It is remarkable that Atm deficiency allows neural de-
velopment to proceed so completely in Lig4-deficient
animals. Clearly, a consequence of this is cells that have
a genome containing unrepaired or misrepaired DNA
double-strand breaks contributing to CNS function.
Thus, it is likely that while the form of the CNS is in-
tact, functionality may be compromised, and this may
contribute to early postnatal lethality. In view of the
severe phenotype, homologous recombination is clearly
insufficient in compensating for Lig4 deficiency. In bud-
ding yeast, the small amount of residual DNA end-join-
ing observed in cells lacking Lig4 is associated with the
introduction of frequent sequence errors and misalign-
ments (Schar et al. 1997). It seems likely that in humans,

Figure 3. Normal brain development occurs in Lig4−/− Atm−/− mice. Cerebellum from
newborn mice was stained with neutral red (a,d,g), Tuj1 (b,e,h), or NeuN (c,f,i). (a–c) Wild
type; (d–f) Atm–/–; (g–i) Lig4−/− Atm–/–. The asterisk indicates the external granule layer,
and the arrow marks the Purkinje cell layer (PL). Magnification is 100×.
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ATM deficiency allows genomically compromised cells
with endogenously produced DNA double-strand breaks
to become part of the final form of the nervous system,
and that subsequent dysfunction because of this geno-
mic damage leads to neurodegeneration.

Materials and methods
Gene knockout mice
The Lig4−/− and Atm−/− mice used in this study have been described
previously (Barnes et al. 1998; Herzog et al. 1998).

Histology and immunohistochemistry
Embryos and postnatal brains were fixed in 4% paraformaldehyde, cryo-
protected in 20% sucrose/PBS and cryosectioned (10 µm coronal or sag-
ittal sections). All immunohistochemical analysis was done using anti-
gen retrieval (Midgley et al. 1992). p53 was detected using the CM5
anti-p53 antibody (Vector laboratories) at a dilution of 1 : 500; antiactive
caspase-3 was detected with affinity-purified CM1 (Srinivasan et al. 1998)
antibody (0.66 mg/mL) at a dilution of 1 : 1500; Tuj1 (BAbCO) and NeuN
(Chemicon) were both used at 1 : 500 dilution. ISEL staining was per-
formed on tissue cryosections using the Klenow-FragEL kit (Oncogene
Research Products) according to the manufacturer’s directions. The Vec-
tastain Elite ABC kit/VIP substrate avidin/biotin immunoperoxidase sys-
tem (Vector laboratories) were used to visualize the immunopositive sig-
nal, and sections were counter stained with 0.1% methyl green (Vector
laboratories) and mounted in permount. For Tuj1 and NeuN, immuno-
fluorescence was done with Cy-3 conjugated secondary antibody (Jackson
Immunologicals) to visualize primary antibody binding.

Flow cytometry analysis
Cell suspensions of thymus from neonatal pups after birth were stained
with anti-CD4 and CD8 coupled with phycoerythrin and fluorescein
isothiocyanate, respectively. Single-cell suspensions of spleen from new-
born pups for B-cell analysis were labeled with anti-CD45/B220, IgM, and
IgD coupled to allophycocyanin, phycoerythrin, and fluorescein isothio-
cyanate, respectively. B cells were isolated by gating the CD45/B220
positive populations, and IgM/IgD signals were plotted. All labeled cy-
tometry markers were obtained from Pharmingen.
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Note added in proof
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